View on GitHub

EGR557: Foldable Robotics Spring 2021

Using Foldable Robotic Mechanisms to Scale Inclined Spaces

Home

Research Question

[1] A. G. V Winter, R. L. H. Deits, D. S. Dorsch, A. H. Slocum, and A. E. Hosoi, “Razor clam to RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation,” Bioinspiration and Biomimetics, vol. 9, no. 3, 2014, doi: 10.1088/1748-3182/9/3/036009.

[2] J. M. Brown, M. P. Austin, B. D. Miller, and J. E. Clark, “Evidence for multiple dynamic climbing gait families,” Bioinspiration and Biomimetics, vol. 14, no. 3, 2019, doi: 10.1088/1748-3190/aae420.

[3] Y. Jiang, D. Chen, H. Zhang, F. Giraud, and J. Paik, “Multimodal pipe-climbing robot with origami clutches and soft modular legs,” Bioinspiration and Biomimetics, vol. 15, no. 2, 2020, doi: 10.1088/1748-3190/ab5928.

[4] D. Qiaoling, L. Yan, and L. Sinan, “Design of a micro pole-climbing robot,” Int. J. Adv. Robot. Syst., vol. 16, no. 3, 2019, doi: 10.1177/1729881419852813.

Biomechanics Background and Initial Specifications

[1] Fraser, S., Shelmerdine, R.L., and Mouat, B, “Razor clam biology, ecology, stock assessment, and exploitation: a review of Ensis spp. in Wales,” in NAFC Marine Centre, 2018.

[2] A. G. Winter and A. E. Hosoi, “Identification and evaluation of the atlantic razor clam (Ensis directus) for biologically inspired subsea burrowing systems,” in Integrative and Comparative Biology, 2011, vol. 51, no. 1, doi: 10.1093/icb/icr038.

[3] S. Huang and J. Tao, “Modeling of the Burrowing Mechanism by Razor Clam: Role of Penetration Kinematics,” 2018, doi: 10.1061/9780784481585.053.

[4] S. Huang and J. Tao, “Modeling Clam-inspired Burrowing in Dry Sand using Cavity Expansion Theory and DEM,” Acta Geotech., vol. 15, no. 8, 2020, doi: 10.1007/s11440-020-00918-8.

[5] A. G. Winter, R. L. H. Deits, and A. E. Hosoi, “Localized fluidization burrowing mechanics of Ensis directus,” J. Exp. Biol., vol. 215, no. 12, 2012, doi: 10.1242/jeb.058172.

[6] J. J. Tao, S. Huang, and Y. Tang, “SBOR: a minimalistic soft self-burrowing-out robot inspired by razor clams,” Bioinspiration and Biomimetics, vol. 15, no. 5, 2020, doi: 10.1088/1748-3190/ab8754.

[7] Y. Jiang, D. Chen, H. Zhang, F. Giraud, and J. Paik, “Multimodal pipe-climbing robot with origami clutches and soft modular legs,” Bioinspiration and Biomimetics, vol. 15, no. 2, 2020, doi: 10.1088/1748-3190/ab5928.

[8] A. G. V Winter, R. L. H. Deits, D. S. Dorsch, A. H. Slocum, and A. E. Hosoi, “Razor clam to RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation,” Bioinspiration and Biomimetics, vol. 9, no. 3, 2014, doi: 10.1088/1748-3182/9/3/036009.

[9] D. S. Dorsch and A. G. V. Winter, “Design of a low energy, self contained subsea burrowing robot based on localized fluidization exhibited by atlantic razor clams,” in Proceedings of the ASME Design Engineering Technical Conference, 2014, vol. 5A, doi: 10.1115/DETC2014-34953.

[10] K. N. Nordstrom, D. S. Dorsch, W. Losert, and A. G. Winter, “Microstructural view of burrowing with a bioinspired digging robot,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 92, no. 4, 2015, doi: 10.1103/PhysRevE.92.042204.

Dynamics

[1] A. Industries, “Micro Servo - MG90D High Torque Metal Gear,” adafruit industries blog RSS. [Online]. Available: https://www.adafruit.com/product/1143. [Accessed: 08-Mar-2021].

[2] “The Online Materials Information Resource,” MatWeb, 1996. [Online]. Available: http://www.matweb.com/search/datasheet.aspx?matguid=af58cf14010141b1a1cd94def4826389&ckck=1. [Accessed: 08-Mar-2021].

[3] “Spring Rate Calculator,” The Spring Store. [Online]. Available: https://www.thespringstore.com/spring-rate-calculator.html. [Accessed: 08-Mar-2021].

[4] “Basic Tracker Tutorial”, Daniel Aukes, Foldable Robotics [Online]. Available: https://egr557.github.io/modules/validation/Tracker%20tutorial.html [Accessed: 07- Mar-2021]

[5] “Approximating compliant beams with the pseudo-rigid body model[Online]. Available:https://egr557.github.io/modules/compliance/generated/prbm.html [Accessed: 08- Mar-2021]