
4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 1/28

Design and Manufacturing Workflow
1. Create a quick paper mockup of your final prototype design (you may use a prior prototype if it still applies, but you may destroy it.). Once you

have arrived at your desired architecture, proceed to unfold the prototype in a way that makes sense from the perspective of optimizing material
usage, staying within any boundary limitations (size of a piece of posterboard, size of the cutter you will be using).

The final prototype of our Razor Clam inspired foldable robot will consist of three sarrus mechanisms placed on top of one another. The sarrus
mechanisms will be constructed from 8.5" x 11" black cardstock. The sarrus mechanisms have five holes on the top and bottom links. These holes will be
used to attach 3D printed electrical housing and spring mounts. Figures 1a-1c depict a folded sarrus mechanism and two flattened sarrus mechanism
(one physically drawn and one electronically drawn).

Figure 1a: Electronically Drawn Sarrus Mechanism

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 2/28

Figure 1b: Hand Drawn Sarrus Mechanism

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 3/28

Figure 1c: Folded Sarrus Mechanism (mounting holes were not cut out yet)

1. Design the geometry of your robot in .dxf format. Convert the flattened pattern to dimensioned a Solidworks sketch. Include any mounting holes
for motors, springs, or connectors. Use the Solidworks tutorial to create a hinged assembly of all parts of the design. Take a screenshot of the robot
in its folded & assembled state. Flatten the assembly back to its original flattened state. Create a drawing from the assembly and use the
solidworks export macro to export a yaml file (generic). Use the solidworks support functionality in foldable robotics to convert to a dxf.

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 4/28

Although the final prototype will consist of three sarrus mechanisms stacked on top of one another, a solidworks assembly was created only using one
sarrus mechanism. The sarrus mechanism created has mounting holes where 3D printed parts will attach to. These 3D printed parts will connect the
three sarrus mechanisms together. Figures 2a and 2b depict a flattened and folded Solidworks model of our robots sarrus mechanisms. Two missing
joints were present when using the in-class method of retrieving the yaml file and converting it into a dxf file. We realized that this is a bug within the
Foldable Robotics code. Fgure 2c shows the dxf file created.

Figure 2a: Flattened Solidworks Sarrus Mechanism

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 5/28

Figure 2b: Folded Solidworks Sarrus Mechanism

Figure 2c: .dxf File
Below is the Jupyter Notebook code used to convert the Solidworks generated yaml file to a dxf file.

In [1]: import foldable_robotics
from foldable_robotics.layer import Layer
from foldable_robotics.laminate import Laminate
import shapely.geometry as sg
foldable_robotics.resolution=4

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 6/28

In [2]: import foldable_robotics
import foldable_robotics.dxf
import numpy
import shapely.geometry as sg
from foldable_robotics.layer import Layer
from foldable_robotics.laminate import Laminate
import foldable_robotics.manufacturing
import foldable_robotics.parts.castellated_hinge1
import idealab_tools.plot_tris
from math import pi, sin,cos,tan
import idealab_tools.text_to_polygons
foldable_robotics.display_height=200
foldable_robotics.line_width=.5

from foldable_robotics.layer import Layer
from foldable_robotics.laminate import Laminate
import foldable_robotics
import foldable_robotics.dxf
import foldable_robotics.manufacturing
import foldable_robotics.parts.castellated_hinge1
foldable_robotics.display_height=200
foldable_robotics.line_width=.5

import os
import foldable_robotics.solidworks_support

In [3]: def get_bodies(filename, layername, num_layers):
 body = foldable_robotics.dxf.read_lwpolylines(filename,layer=layername, arc_approx = 10)

 bodies = [Layer(sg.Polygon(item)) for item in body]
 body = bodies.pop(0)
 for item in bodies:
 body ^= item
 body = body.to_laminate(num_layers)
 return body

In [4]: def get_hinge_lines(filename,layername):
 hinge_lines1 = foldable_robotics.dxf.read_lines(filename,layer=layername)
 hinge_lines2 = foldable_robotics.dxf.read_lwpolylines(filename,layer=layername)
 hinge_lines3 = []
 for points in hinge_lines2:
 hinge_lines3.append(points[:2])
 hinge_lines = hinge_lines1 +hinge_lines3
 return hinge_lines

In [5]: def hinge_lines_to_hinges(hinge_lines,hinge):
 lam = Layer().to_laminate(len(hinge))
 all_hinges = []
 for p3,p4 in hinge_lines:
 all_hinges.append(hinge.map_line_stretch((0,0),(1,0),p3,p4))
 all_hinges = lam.unary_union(*all_hinges)
 return all_hinges

In [6]: def get_cuts(filename,layername,thickness,num_layers):
 cut_lines = foldable_robotics.dxf.read_lines(filename,layer=layername)
 cut_lines += foldable_robotics.dxf.read_lwpolylines(filename,layer=layername, arc_approx = 10)

 cuts = []
 for item in cut_lines:
 cuts.append(Layer(sg.LineString(item)))
 cuts = Layer().unary_union(*cuts)
 cuts<<=thickness/2
 cuts = cuts.to_laminate(num_layers)
 return cuts

In [7]: def get_holes(filename, layername,num_layers):
 holes = foldable_robotics.dxf.read_circles(filename,layer='holes')

 holes2 = []
 for center, radius in holes:
 holes2.append(sg.Point(*center).buffer(radius))
 holes_layer = Layer(*holes2)
 holes_lam = holes_layer.to_laminate(num_layers)
 return holes_lam

In [8]: def hinge_width_calculator(desired_degrees,thickness):

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 7/28

 theta = (180-desired_degrees)*pi/180
 w=thickness/tan(theta)
 return w

In [9]: def polys_to_layer(l1):
 l1 = [sg.Polygon(item) for item in l1]
 l11 = Layer(l1.pop(0))
 for item in l1:
 l11 ^= Layer(item)
 return l11

In [10]: def output_pdf(filename,design,x,y,layers_separate = True):
 design = design.translate(x,y)
 design=design.scale(1/25.4,1/25.4)
 design=design.scale(foldable_robotics.pdf.ppi,foldable_robotics.pdf.ppi)
 if isinstance(design,Laminate):
 if not layers_separate:
 p=foldable_robotics.pdf.Page(filename+'.pdf')
 for d in design:
 # d = design[0]
 for item in d.exteriors()+d.interiors():
 p.draw_poly(item)
 p.close()
 else:
 for ii,d in enumerate(design):
 p=foldable_robotics.pdf.Page(filename+'{0:03f}.pdf'.format(ii))
 for item in d.exteriors()+d.interiors():
 p.draw_poly(item)
 p.close()

 elif isinstance(design,Layer):
 p=foldable_robotics.pdf.Page(filename+'.pdf')
 for item in design.exteriors()+design.interiors():
 p.draw_poly(item)
 p.close()

In [11]: def build_layer_numbers(num_layers, text_size = None, prop=None):
 text_size = text_size or 1
 prop = prop or {'family':'Arial','size':text_size}
 layer_ids = []
 for ii in range(num_layers):

 l = idealab_tools.text_to_polygons.text_to_polygons('Layer '+str(ii),prop=prop)
 layer_ids.append(l)

 layer_ids = [polys_to_layer(item) for item in layer_ids]
 layer_id = Laminate(*layer_ids)
 return layer_id

In [12]: def build_web(design,keepout,support_width,jig_diameter,jig_hole_spacing,is_adhesive):
 num_layers = len(design)

 layer_id = build_layer_numbers(num_layers,text_size=jig_diameter)

 design_outer = foldable_robotics.manufacturing.unary_union(design)
 bb1= (design_outer<<jig_hole_spacing/2).bounding_box()
 (x1,y1),p2 = bb1.bounding_box_coords()
 w,h = bb1.get_dimensions()
 w2 = round(w/jig_hole_spacing)*jig_hole_spacing
 h2 = round(h/jig_hole_spacing)*jig_hole_spacing

 points = []
 points.append(sg.Point(x1,y1))
 points.append(sg.Point(x1+w2,y1))
 points.append(sg.Point(x1,y1+h2))
 points.append(sg.Point(x1+w2,y1+h2))

 layer_id = layer_id.translate(x1+jig_diameter,y1-jig_diameter/2)
 placement_holes2 = Layer(*points)
 placement_holes2<<=(jig_diameter/2)
 sheet = (placement_holes2<<10).bounding_box()
 placement_holes2=placement_holes2.to_laminate(num_layers)
 sheet=sheet.to_laminate(num_layers)

 removable_scrap = calculate_removable_scrap(design,sheet,support_width,is_adhesive)

 web = (removable_scrap-placement_holes2)-layer_id
 return web,sheet

In [13]: def calculate_removable_scrap(design,sheet,width,is_adhesive):

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 8/28

(<foldable_robotics.layer.Layer at 0x1352c90b970>,
 <foldable_robotics.layer.Layer at 0x1352c902be0>,
 [<foldable_robotics.solidworks_support.Component at 0x1352c9022e0>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902340>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902a90>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902cd0>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902d60>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902af0>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902190>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902a30>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902fd0>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902e80>,
 <foldable_robotics.solidworks_support.Component at 0x1352c902820>,
 <foldable_robotics.solidworks_support.Component at 0x1352c9020d0>,
 <foldable_robotics.solidworks_support.Component at 0x1352c9025e0>])

1. Using a single-layer design approach, compute the design of your device in one layer, plotting each step along the way. This should include: a one-
layer hinge design that fits your team’s need (with justification for material used, rotational needs, manufacturing method used, etc), mapping the
hinge design to each joint in your joints layer of the dxf, subtracting the one layer hinge design from your body layer, and holes computed for any
vertices.

Generating a perforated hinge for the single layer design.

 '''this computes all removable scrap given a sheet, a design, and a clearance width'''
 all_scrap = sheet-design

 ru = foldable_robotics.manufacturing.not_removable_up(design,is_adhesive)
 rd = foldable_robotics.manufacturing.not_removable_down(design,is_adhesive)

 removable_scrap_up = all_scrap-(ru<<width)
 removable_scrap_down = all_scrap-(rd<<width)

 removable_scrap = removable_scrap_up|removable_scrap_down
 return removable_scrap

In [14]: folder = 'C:/Users/amarine3/Design and Manufacturing Workflow/'
input_filename = folder+'Sarrus Mechanism - Sheet1_Drawing View1.yaml'
output_file_name = 'design.dxf'

In [15]: round_digits = 2
prescale=1000
jig_diameter = 5
support_width = 1
kerf = .05
jig_hole_spacing=20
is_adhesive1 = [False]
is_adhesive = [False,True,False,True,False]
arc_approx = 10

In [16]: foldable_robotics.solidworks_support.process(input_filename,output_file_name,prescale,round_digits)

Out[16]:

In [17]: radius = .01
num_perforations = 5
num_segments = num_perforations*2+1
num_points = num_segments+1
a=numpy.r_[0:1:num_points*1j]
lines = []
for ii in range(int(len(a)/2)-1):
 p1 = sg.Point(a[2*ii+1]+radius,0)
 p2 = sg.Point(a[2*ii+2]-radius,0)
 lines.append(sg.LineString((p1,p2)))
hinge = Layer(*lines)
hinge<<=radius
hinge = Laminate(hinge)

w=hinge_width_calculator(150,1.1)
hinge = hinge.scale(1,w)
hinge.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=false 9/28

1

Generating main body of the design from the imported DXF.

Perforated hinges at each joint line from the joint layer.

In [18]: NUMLAYERS = len(hinge)
NUMLAYERS

Out[18]:

In [19]: hinge.plot()

In [20]: body = get_bodies(output_file_name,'body',NUMLAYERS)
body = foldable_robotics.manufacturing.cleanup(body,.01)
body.plot()

In [21]: joint_lines= get_hinge_lines(output_file_name,'joints')
joints = hinge_lines_to_hinges(joint_lines,hinge)
joints = foldable_robotics.manufacturing.cleanup(joints,.001)
joints.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 10/28

Generating holes at vertices to prevent collision.

End Result.

Generating the keepout.

In [22]: cuts = get_cuts(output_file_name,'cuts',.02,NUMLAYERS)

In [23]: holes = get_holes(output_file_name,'holes',NUMLAYERS)

In [24]: hole,dummy = foldable_robotics.manufacturing.calc_hole(joint_lines,w)
hole = hole.to_laminate(NUMLAYERS)
hole<<=.2
hole.plot()

In [25]: design = body- hole - joints - cuts - holes
design.plot()

In [26]: keepout = foldable_robotics.manufacturing.keepout_laser(design)
keepout.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 11/28

Generating web and sheet generation.

Because this is 1-layer, only single pass is required.

Generating support.

In [27]: web,sheet=build_web(design,keepout,support_width,jig_diameter,jig_hole_spacing,is_adhesive1)
web.plot()

In [28]: sheet.plot()

In [29]: first_pass_scrap = sheet - design
first_pass_scrap = foldable_robotics.manufacturing.cleanup(first_pass_scrap,.00001)
first_pass_scrap.plot()

In [30]: support = foldable_robotics.manufacturing.support(design,foldable_robotics.manufacturing.keepout_laser,support_width,support_width/2
support.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 12/28

Combining the web, design and support into the supported design:

Plotting cut material final cut.

Plotting remaining material.

In [31]: supported_design = web|design|support
supported_design.plot()

In [32]: cut_material = (keepout<<kerf)-keepout
cut_material.plot()

In [33]: final_cut = sheet - keepout
final_cut = final_cut[0]
final_cut.plot()

In [34]: remaining_material = supported_design-cut_material
remaining_material.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 13/28

Plotting pieces resulting from cuts.

In [35]: remaining_parts = foldable_robotics.manufacturing.find_connected(remaining_material,is_adhesive1)
for item in remaining_parts:
 item.plot(new=True)

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 14/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 15/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 16/28

False

Exporting 1-layer dxf.

1. Using a 5-layer design approach, compute the same design of your device in five layers, plotting each step along the way. This should include: a
five-layer hinge design that fits your team’s need (with justification for material used, rotational needs, manufacturing method used, etc), mapping
the hinge design to each joint in your joints layer of the dxf, subtracting the 5-layer hinge design from the body laminate, holes computed for any
vertices.

Generating a 5 layer castellated hinge.

In [36]: d3=design>>1
for item in remaining_parts:
 if not (item&d3).is_null():
 break
check = (item^design)
print(check.is_null())

In [37]: final_cut.export_dxf('single_layer_cut')

In [38]: hinge = foldable_robotics.parts.castellated_hinge1.generate()
w=hinge_width_calculator(150,1.1)
hinge = hinge.scale(1,w)
hinge.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 17/28

5

Mapping hinge design.

Computting holes.

In [39]: NUMLAYERS = len(hinge)
NUMLAYERS

Out[39]:

In [40]: body = get_bodies(output_file_name,'body',NUMLAYERS)
body = foldable_robotics.manufacturing.cleanup(body,.01)
body.plot()

In [41]: joint_lines= get_hinge_lines(output_file_name,'joints')
joints = hinge_lines_to_hinges(joint_lines,hinge)
joints = foldable_robotics.manufacturing.cleanup(joints,.02)
joints.plot()

In [42]: cuts = get_cuts(output_file_name,'cuts',.02,NUMLAYERS)

In [43]: holes = get_holes(output_file_name,'holes',NUMLAYERS)

In [44]: hole,dummy = foldable_robotics.manufacturing.calc_hole(joint_lines,w)
hole = hole.to_laminate(NUMLAYERS)
hole<<=.2
hole.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 18/28

1. Using the full design pipeline found on the website and discussed in class, compute the manufacturing geometry for a five-layer laminate, plotting
each step along the way. This should include: web design, support design, non-removable scrap, connection check of all parts that result from the
second-pass cut, and similarity check between design and removed final part.

Subtracting hole, cut, and joint geometries from the body.

Web design

In [45]: design = body- hole - joints - cuts - holes
design.plot()

In [46]: keepout = foldable_robotics.manufacturing.keepout_laser(design)
keepout.plot()

In [47]: web,sheet=build_web(design,keepout,support_width,jig_diameter,jig_hole_spacing,is_adhesive)
web.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 19/28

Support design.

In [48]: sheet.plot()

In [49]: second_pass_scrap = sheet-keepout
first_pass_scrap = sheet - design-second_pass_scrap
first_pass_scrap = foldable_robotics.manufacturing.cleanup(first_pass_scrap,.00001)
first_pass_scrap.plot()

In [50]: support = foldable_robotics.manufacturing.support(design,foldable_robotics.manufacturing.keepout_laser,support_width,support_width/2
support.plot()

In [51]: supported_design = web|design|support
supported_design.plot()

In [52]: cut_material = (keepout<<kerf)-keepout
cut_material.plot()

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 20/28

Full cut.

Connection check.

C:\Anaconda3\lib\site-packages\foldable_robotics\laminate.py:91: RuntimeWarning: More than 20 figures have been opened. Figures crea
ted through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory.
(To control this warning, see the rcParam `figure.max_open_warning`).
 plt.figure()

In [53]: final_cut = sheet - keepout
final_cut = final_cut[0]
final_cut.plot()

In [54]: remaining_material = supported_design-cut_material
remaining_material.plot()

In [55]: remaining_parts = foldable_robotics.manufacturing.find_connected(remaining_material,is_adhesive)
for item in remaining_parts:
 item.plot(new=True)

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 21/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 22/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 23/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 24/28

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 25/28

In [56]: d3=design>>1
for item in remaining_parts:
 if not (item&d3).is_null():
 break
check = (item^design)
print(check.is_null())

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 26/28

False

False

Exporting 5-layer DXFs:

1. Export your final cut files to .dxf or .pdf, depending on your need. You should export one file per layer as well as one final cut file(if using a laminate
process).

In [57]: if check.is_null():
 supported_design.export_dxf('first_pass')
 final_cut.export_dxf('second_pass')

In [58]: w,h = supported_design.get_dimensions()
p0,p1 = supported_design.bounding_box_coords()

rigid_layer = supported_design[0] | (supported_design[-1].translate(w+10,0))
rigid_layer.plot()

In [59]: l4 = supported_design[3].scale(-1,1)
p2,p3 = l4.bounding_box_coords()
l4 = l4.translate(p0[0]-p2[0]+10+w,p0[1]-p2[1])

adhesive_layer = supported_design[1] | l4
adhesive_layer.plot()

In [60]: first_pass = Laminate(rigid_layer,adhesive_layer,supported_design[2])
if check.is_null():
 first_pass.export_dxf('first_pass')
 final_cut.export_dxf('final_cut')

In [61]: check.is_null()

Out[61]:

In [62]: rigid_layer.export_dxf('rigid_layer')
adhesive_layer.export_dxf('adhesive_layer')
final_cut.export_dxf('final_cut')

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 27/28

Figure 6a: Single-Layer .dxf File

Figure 6b: Five-Layer Adhesive .dxf File

4/22/2021 Design and Manufacturing Workflow

localhost:8888/nbconvert/html/EGR 557 - Assignments/Design and Manufacturing Workflow/Design and Manufacturing Workflow.ipynb?download=f… 28/28

Figure 6c: Five-Layer Rigid .dxf File

Figure 6d: Five-Layer Final .dxf File

